Month End Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: cramtick70

Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Questions 4

A company stores server logs in an Amazon 53 bucket. The company needs to keep the logs for 1 year. The logs are not required after 1 year.

A data engineer needs a solution to automatically delete logs that are older than 1 year.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Define an S3 Lifecycle configuration to delete the logs after 1 year.

B.

Create an AWS Lambda function to delete the logs after 1 year.

C.

Schedule a cron job on an Amazon EC2 instance to delete the logs after 1 year.

D.

Configure an AWS Step Functions state machine to delete the logs after 1 year.

Buy Now
Questions 5

A company uses Amazon S3 to store data and Amazon QuickSight to create visualizations.

The company has an S3 bucket in an AWS account named Hub-Account. The S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The company's QuickSight instance is in a separate account named BI-Account

The company updates the S3 bucket policy to grant access to the QuickSight service role. The company wants to enable cross-account access to allow QuickSight to interact with the S3 bucket.

Which combination of steps will meet this requirement? (Select TWO.)

Options:

A.

Use the existing AWS KMS key to encrypt connections from QuickSight to the S3 bucket.

B.

Add the 53 bucket as a resource that the QuickSight service role can access.

C.

Use AWS Resource Access Manager (AWS RAM) to share the S3 bucket with the Bl-Account account.

D.

Add an IAM policy to the QuickSight service role to give QuickSight access to the KMS key that encrypts the S3 bucket.

E.

Add the KMS key as a resource that the QuickSight service role can access.

Buy Now
Questions 6

A company has a data warehouse that contains a table that is named Sales. The company stores the table in Amazon Redshift The table includes a column that is namedcity_name. The company wants to query the table to find all rows that have a city_name that starts with "San" or "El."

Which SQL query will meet this requirement?

Options:

A.

Select * from Sales where city_name - '$(San|EI)";

B.

Select * from Sales where city_name -, ^(San|EI) *';

C.

Select * from Sales where city_name - '$(San&EI)";

D.

Select * from Sales where city_name -, ^(San&EI)";

Buy Now
Questions 7

A company maintains a data warehouse in an on-premises Oracle database. The company wants to build a data lake on AWS. The company wants to load data warehouse tables into Amazon S3 and synchronize the tables with incremental data that arrives from the data warehouse every day.

Each table has a column that contains monotonically increasing values. The size of each table is less than 50 GB. The data warehouse tables are refreshed every night between 1 AM and 2 AM. A business intelligence team queries the tables between 10 AM and 8 PM every day.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Use an AWS Database Migration Service (AWS DMS) full load plus CDC job to load tables that contain monotonically increasing data columns from the on-premises data warehouse to Amazon S3. Use custom logic in AWS Glue to append the daily incremental data to a full-load copy that is in Amazon S3.

B.

Use an AWS Glue Java Database Connectivity (JDBC) connection. Configure a job bookmark for a column that contains monotonically increasing values. Write custom logic to append the daily incremental data to a full-load copy that is in Amazon S3.

C.

Use an AWS Database Migration Service (AWS DMS) full load migration to load the data warehouse tables into Amazon S3 every day Overwrite the previous day's full-load copy every day.

D.

Use AWS Glue to load a full copy of the data warehouse tables into Amazon S3 every day. Overwrite the previous day's full-load copy every day.

Buy Now
Questions 8

A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.

A data engineer notices that one of the fields in the source data includes values that are in JSON format.

How should the data engineer load the JSON data into the data warehouse with the LEAST effort?

Options:

A.

Use the SUPER data type to store the data in the Amazon Redshift table.

B.

Use AWS Glue to flatten the JSON data and ingest it into the Amazon Redshift table.

C.

Use Amazon S3 to store the JSON data. Use Amazon Athena to query the data.

D.

Use an AWS Lambda function to flatten the JSON data. Store the data in Amazon S3.

Buy Now
Questions 9

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

Options:

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.

Buy Now
Questions 10

A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.

The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

AWS Glue workflows

B.

AWS Step Functions tasks

C.

AWS Lambda functions

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) workflows

Buy Now
Questions 11

A company uses Amazon RDS to store transactional data. The company runs an RDS DB instance in a private subnet. A developer wrote an AWS Lambda function with default settings to insert, update, or delete data in the DB instance.

The developer needs to give the Lambda function the ability to connect to the DB instance privately without using the public internet.

Which combination of steps will meet this requirement with the LEAST operational overhead? (Choose two.)

Options:

A.

Turn on the public access setting for the DB instance.

B.

Update the security group of the DB instance to allow only Lambda function invocations on the database port.

C.

Configure the Lambda function to run in the same subnet that the DB instance uses.

D.

Attach the same security group to the Lambda function and the DB instance. Include a self-referencing rule that allows access through the database port.

E.

Update the network ACL of the private subnet to include a self-referencing rule that allows access through the database port.

Buy Now
Questions 12

A manufacturing company wants to collect data from sensors. A data engineer needs to implement a solution that ingests sensor data in near real time.

The solution must store the data to a persistent data store. The solution must store the data in nested JSON format. The company must have the ability to query from the data store with a latency of less than 10 milliseconds.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use a self-hosted Apache Kafka cluster to capture the sensor data. Store the data in Amazon S3 for querying.

B.

Use AWS Lambda to process the sensor data. Store the data in Amazon S3 for querying.

C.

Use Amazon Kinesis Data Streams to capture the sensor data. Store the data in Amazon DynamoDB for querying.

D.

Use Amazon Simple Queue Service (Amazon SQS) to buffer incoming sensor data. Use AWS Glue to store the data in Amazon RDS for querying.

Buy Now
Questions 13

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

Options:

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Buy Now
Questions 14

A company stores details about transactions in an Amazon S3 bucket. The company wants to log all writes to the S3 bucket into another S3 bucket that is in the same AWS Region.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the event to Amazon Kinesis Data Firehose. Configure Kinesis Data Firehose to write the event to the logs S3 bucket.

B.

Create a trail of management events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

C.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the events to the logs S3 bucket.

D.

Create a trail of data events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

Buy Now
Questions 15

A company needs to partition the Amazon S3 storage that the company uses for a data lake. The partitioning will use a path of the S3 object keys in the following format: s3://bucket/prefix/year=2023/month=01/day=01.

A data engineer must ensure that the AWS Glue Data Catalog synchronizes with the S3 storage when the company adds new partitions to the bucket.

Which solution will meet these requirements with the LEAST latency?

Options:

A.

Schedule an AWS Glue crawler to run every morning.

B.

Manually run the AWS Glue CreatePartition API twice each day.

C.

Use code that writes data to Amazon S3 to invoke the Boto3 AWS Glue create partition API call.

D.

Run the MSCK REPAIR TABLE command from the AWS Glue console.

Buy Now
Questions 16

An airline company is collecting metrics about flight activities for analytics. The company is conducting a proof of concept (POC) test to show how analytics can provide insights that the company can use to increase on-time departures.

The POC test uses objects in Amazon S3 that contain the metrics in .csv format. The POC test uses Amazon Athena to query the data. The data is partitioned in the S3 bucket by date.

As the amount of data increases, the company wants to optimize the storage solution to improve query performance.

Which combination of solutions will meet these requirements? (Choose two.)

Options:

A.

Add a randomized string to the beginning of the keys in Amazon S3 to get more throughput across partitions.

B.

Use an S3 bucket that is in the same account that uses Athena to query the data.

C.

Use an S3 bucket that is in the same AWS Region where the company runs Athena queries.

D.

Preprocess the .csv data to JSON format by fetching only the document keys that the query requires.

E.

Preprocess the .csv data to Apache Parquet format by fetching only the data blocks that are needed for predicates.

Buy Now
Questions 17

A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.

Which solution will meet these requirements?

Options:

A.

Use AWS Step Functions to periodically export data from the Amazon DynamoDB tables to an Amazon S3 bucket. Use an AWS Lambda function to load the data into Amazon OpenSearch Service.

B.

Configure an AW5 Glue job to have a source of Amazon DynamoDB and a destination of Amazon OpenSearch Service to transfer data in near real time.

C.

Use Amazon DynamoDB Streams to capture table changes. Use an AWS Lambda function to process and update the data in Amazon OpenSearch Service.

D.

Use a custom OpenSearch plugin to sync data from the Amazon DynamoDB tables.

Buy Now
Questions 18

A company needs to build a data lake in AWS. The company must provide row-level data access and column-level data access to specific teams. The teams will access the data by using Amazon Athena, Amazon Redshift Spectrum, and Apache Hive from Amazon EMR.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon S3 for data lake storage. Use S3 access policies to restrict data access by rows and columns. Provide data access through Amazon S3.

B.

Use Amazon S3 for data lake storage. Use Apache Ranger through Amazon EMR to restrict data access by rows and columns. Provide data access by using Apache Pig.

C.

Use Amazon Redshift for data lake storage. Use Redshift security policies to restrict data access by rows and columns. Provide data access by using Apache Spark and Amazon Athena federated queries.

D.

Use Amazon S3 for data lake storage. Use AWS Lake Formation to restrict data access by rows and columns. Provide data access through AWS Lake Formation.

Buy Now
Questions 19

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

Options:

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

Buy Now
Questions 20

A data engineer uses Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to run data pipelines in an AWS account. A workflow recently failed to run. The data engineer needs to use Apache Airflow logs to diagnose the failure of the workflow. Which log type should the data engineer use to diagnose the cause of the failure?

Options:

A.

YourEnvironmentName-WebServer

B.

YourEnvironmentName-Scheduler

C.

YourEnvironmentName-DAGProcessing

D.

YourEnvironmentName-Task

Buy Now
Questions 21

A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Kinesis Data Streams to stage data in Amazon S3. Use the COPY command to load data from Amazon S3 directly into Amazon Redshift to make the data immediately available for real-time analysis.

B.

Access the data from Kinesis Data Streams by using SQL queries. Create materialized views directly on top of the stream. Refresh the materialized views regularly to query the most recent stream data.

C.

Create an external schema in Amazon Redshift to map the data from Kinesis Data Streams to an Amazon Redshift object. Create a materialized view to read data from the stream. Set the materialized view to auto refresh.

D.

Connect Kinesis Data Streams to Amazon Kinesis Data Firehose. Use Kinesis Data Firehose to stage the data in Amazon S3. Use the COPY command to load the data from Amazon S3 to a table in Amazon Redshift.

Buy Now
Questions 22

A company is migrating on-premises workloads to AWS. The company wants to reduce overall operational overhead. The company also wants to explore serverless options.

The company's current workloads use Apache Pig, Apache Oozie, Apache Spark, Apache Hbase, and Apache Flink. The on-premises workloads process petabytes of data in seconds. The company must maintain similar or better performance after the migration to AWS.

Which extract, transform, and load (ETL) service will meet these requirements?

Options:

A.

AWS Glue

B.

Amazon EMR

C.

AWS Lambda

D.

Amazon Redshift

Buy Now
Questions 23

A gaming company uses Amazon Kinesis Data Streams to collect clickstream data. The company uses Amazon Kinesis Data Firehose delivery streams to store the data in JSON format in Amazon S3. Data scientists at the company use Amazon Athena to query the most recent data to obtain business insights.

The company wants to reduce Athena costs but does not want to recreate the data pipeline.

Which solution will meet these requirements with the LEAST management effort?

Options:

A.

Change the Firehose output format to Apache Parquet. Provide a custom S3 object YYYYMMDD prefix expression and specify a large buffer size. For the existing data, create an AWS Glue extract, transform, and load (ETL) job. Configure the ETL job to combine small JSON files, convert the JSON files to large Parquet files, and add the YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena

B.

Create an Apache Spark job that combines JSON files and converts the JSON files to Apache Parquet files. Launch an Amazon EMR ephemeral cluster every day to run the Spark job to create new Parquet files in a different S3 location. Use the ALTER TABLE SET LOCATION statement to reflect the new S3 location on the existing Athena table.

C.

Create a Kinesis data stream as a delivery destination for Firehose. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to run Apache Flink on the Kinesis data stream. Use Flink to aggregate the data and save the data to Amazon S3 in Apache Parquet format with a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.<

D.

Integrate an AWS Lambda function with Firehose to convert source records to Apache Parquet and write them to Amazon S3. In parallel, run an AWS Glue extract, transform, and load (ETL) job to combine the JSON files and convert the JSON files to large Parquet files. Create a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.

Buy Now
Questions 24

A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.

The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.

Which solution will MOST reduce the data processing time?

Options:

A.

Use AWS Lambda to group the raw input files into larger files. Write the larger files back to Amazon S3. Use AWS Glue to process the files. Load the files into the Amazon Redshift tables.

B.

Use the AWS Glue dynamic frame file-grouping option to ingest the raw input files. Process the files. Load the files into the Amazon Redshift tables.

C.

Use the Amazon Redshift COPY command to move the raw input files from Amazon S3 directly into the Amazon Redshift tables. Process the files in Amazon Redshift.

D.

Use Amazon EMR instead of AWS Glue to group the raw input files. Process the files in Amazon EMR. Load the files into the Amazon Redshift tables.

Buy Now
Questions 25

A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.

The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.

Which Amazon Redshift command will meet these requirements?

Options:

A.

VACUUM FULL Orders

B.

VACUUM DELETE ONLY Orders

C.

VACUUM REINDEX Orders

D.

VACUUM SORT ONLY Orders

Buy Now
Questions 26

A company stores its processed data in an S3 bucket. The company has a strict data access policy. The company uses IAM roles to grant teams within the company different levels of access to the S3 bucket.

The company wants to receive notifications when a user violates the data access policy. Each notification must include the username of the user who violated the policy.

Which solution will meet these requirements?

Options:

A.

Use AWS Config rules to detect violations of the data access policy. Set up compliance alarms.

B.

Use Amazon CloudWatch metrics to gather object-level metrics. Set up CloudWatch alarms.

C.

Use AWS CloudTrail to track object-level events for the S3 bucket. Forward events to Amazon CloudWatch to set up CloudWatch alarms.

D.

Use Amazon S3 server access logs to monitor access to the bucket. Forward the access logs to an Amazon CloudWatch log group. Use metric filters on the log group to set up CloudWatch alarms.

Buy Now
Questions 27

A financial company wants to use Amazon Athena to run on-demand SQL queries on a petabyte-scale dataset to support a business intelligence (BI) application. An AWS Glue job that runs during non-business hours updates the dataset once every day. The BI application has a standard data refresh frequency of 1 hour to comply with company policies.

A data engineer wants to cost optimize the company's use of Amazon Athena without adding any additional infrastructure costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Configure an Amazon S3 Lifecycle policy to move data to the S3 Glacier Deep Archive storage class after 1 day

B.

Use the query result reuse feature of Amazon Athena for the SQL queries.

C.

Add an Amazon ElastiCache cluster between the Bl application and Athena.

D.

Change the format of the files that are in the dataset to Apache Parquet.

Buy Now
Questions 28

A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Write a custom Python application. Host the application on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

B.

Write a PySpark ETL script. Host the script on an Amazon EMR cluster.

C.

Write an AWS Glue PySpark job. Use Apache Spark to transform the data.

D.

Write an AWS Glue Python shell job. Use pandas to transform the data.

Buy Now
Questions 29

A company stores petabytes of data in thousands of Amazon S3 buckets in the S3 Standard storage class. The data supports analytics workloads that have unpredictable and variable data access patterns.

The company does not access some data for months. However, the company must be able to retrieve all data within milliseconds. The company needs to optimize S3 storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use S3 Storage Lens standard metrics to determine when to move objects to more cost-optimized storage classes. Create S3 Lifecycle policies for the S3 buckets to move objects to cost-optimized storage classes. Continue to refine the S3 Lifecycle policies in the future to optimize storage costs.

B.

Use S3 Storage Lens activity metrics to identify S3 buckets that the company accesses infrequently. Configure S3 Lifecycle rules to move objects from S3 Standard to the S3 Standard-Infrequent Access (S3 Standard-IA) and S3 Glacier storage classes based on the age of the data.

C.

Use S3 Intelligent-Tiering. Activate the Deep Archive Access tier.

D.

Use S3 Intelligent-Tiering. Use the default access tier.

Buy Now
Questions 30

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

Options:

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

Buy Now
Questions 31

A data engineer needs to securely transfer 5 TB of data from an on-premises data center to an Amazon S3 bucket. Approximately 5% of the data changes every day. Updates to the data need to be regularly proliferated to the S3 bucket. The data includes files that are in multiple formats. The data engineer needs to automate the transfer process and must schedule the process to run periodically.

Which AWS service should the data engineer use to transfer the data in the MOST operationally efficient way?

Options:

A.

AWS DataSync

B.

AWS Glue

C.

AWS Direct Connect

D.

Amazon S3 Transfer Acceleration

Buy Now
Questions 32

A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS Glue crawler to scan the S3 buckets and RDS databases and build a data catalog. Use data stewards to inspect the data and update the data catalog with the data format.

B.

Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.

C.

Use Amazon Macie to build a data catalog and to identify sensitive data elements. Collect the data format information from Macie.

D.

Use scripts to scan data elements and to assign data classifications based on the format of the data.

Buy Now
Questions 33

A company uses an Amazon Redshift cluster that runs on RA3 nodes. The company wants to scale read and write capacity to meet demand. A data engineer needs to identify a solution that will turn on concurrency scaling.

Which solution will meet this requirement?

Options:

A.

Turn on concurrency scaling in workload management (WLM) for Redshift Serverless workgroups.

B.

Turn on concurrency scaling at the workload management (WLM) queue level in the Redshift cluster.

C.

Turn on concurrency scaling in the settings during the creation of and new Redshift cluster.

D.

Turn on concurrency scaling for the daily usage quota for the Redshift cluster.

Buy Now
Questions 34

A company is planning to upgrade its Amazon Elastic Block Store (Amazon EBS) General Purpose SSD storage from gp2 to gp3. The company wants to prevent any interruptions in its Amazon EC2 instances that will cause data loss during the migration to the upgraded storage.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create snapshots of the gp2 volumes. Create new gp3 volumes from the snapshots. Attach the new gp3 volumes to the EC2 instances.

B.

Create new gp3 volumes. Gradually transfer the data to the new gp3 volumes. When the transfer is complete, mount the new gp3 volumes to the EC2 instances to replace the gp2 volumes.

C.

Change the volume type of the existing gp2 volumes to gp3. Enter new values for volume size, IOPS, and throughput.

D.

Use AWS DataSync to create new gp3 volumes. Transfer the data from the original gp2 volumes to the new gp3 volumes.

Buy Now
Questions 35

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

Buy Now
Questions 36

A healthcare company uses Amazon Kinesis Data Streams to stream real-time health data from wearable devices, hospital equipment, and patient records.

A data engineer needs to find a solution to process the streaming data. The data engineer needs to store the data in an Amazon Redshift Serverless warehouse. The solution must support near real-time analytics of the streaming data and the previous day's data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Load data into Amazon Kinesis Data Firehose. Load the data into Amazon Redshift.

B.

Use the streaming ingestion feature of Amazon Redshift.

C.

Load the data into Amazon S3. Use the COPY command to load the data into Amazon Redshift.

D.

Use the Amazon Aurora zero-ETL integration with Amazon Redshift.

Buy Now
Questions 37

Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.

The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.

Which command should the developer for Branch B run before the developer raises a pull request to the master branch?

Options:

A.

git diff branchB master

git commit -m

B.

git pull master

C.

git rebase master

D.

git fetch -b master

Buy Now
Questions 38

A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.

The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.

Which solution will meet these requirements?

Options:

A.

Use multiple COPY commands to load the data into the Redshift cluster.

B.

Use S3DistCp to load multiple files into Hadoop Distributed File System (HDFS). Use an HDFS connector to ingest the data into the Redshift cluster.

C.

Use a number of INSERT statements equal to the number of Redshift cluster nodes. Load the data in parallel into each node.

D.

Use a single COPY command to load the data into the Redshift cluster.

Buy Now
Questions 39

A company stores employee data in Amazon Redshift A table named Employee uses columns named Region ID, Department ID, and Role ID as a compound sort key. Which queries will MOST increase the speed of a query by using a compound sort key of the table? (Select TWO.)

Options:

A.

Select * from Employee where Region ID='North America';

B.

Select * from Employee where Region ID='North America' and Department ID=20;

C.

Select * from Employee where Department ID=20 and Region ID='North America';

D.

Select " from Employee where Role ID=50;

E.

Select * from Employee where Region ID='North America' and Role ID=50;

Buy Now
Questions 40

A company is building a data stream processing application. The application runs in an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The application stores processed data in an Amazon DynamoDB table.

The company needs the application containers in the EKS cluster to have secure access to the DynamoDB table. The company does not want to embed AWS credentials in the containers.

Which solution will meet these requirements?

Options:

A.

Store the AWS credentials in an Amazon S3 bucket. Grant the EKS containers access to the S3 bucket to retrieve the credentials.

B.

Attach an IAM role to the EKS worker nodes. Grant the IAM role access to DynamoDB. Use the IAM role to set up IAM roles service accounts (IRSA) functionality.

C.

Create an IAM user that has an access key to access the DynamoDB table. Use environment variables in the EKS containers to store the IAM user access key data.

D.

Create an IAM user that has an access key to access the DynamoDB table. Use Kubernetes secrets that are mounted in a volume of the EKS cluster nodes to store the user access key data.

Buy Now
Questions 41

A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.

Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.

Which combination of troubleshooting steps should the data engineer take? (Select TWO.)

Options:

A.

Confirm that Athena is pointing to the correct Amazon S3 location.

B.

Increase the query timeout duration.

C.

Use the MSCK REPAIR TABLE command.

D.

Restart Athena.

E.

Delete and recreate the problematic Athena table.

Buy Now
Questions 42

A retail company has a customer data hub in an Amazon S3 bucket. Employees from many countries use the data hub to support company-wide analytics. A governance team must ensure that the company's data analysts can access data only for customers who are within the same country as the analysts.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Create a separate table for each country's customer data. Provide access to each analyst based on the country that the analyst serves.

B.

Register the S3 bucket as a data lake location in AWS Lake Formation. Use the Lake Formation row-level security features to enforce the company's access policies.

C.

Move the data to AWS Regions that are close to the countries where the customers are. Provide access to each analyst based on the country that the analyst serves.

D.

Load the data into Amazon Redshift. Create a view for each country. Create separate 1AM roles for each country to provide access to data from each country. Assign the appropriate roles to the analysts.

Buy Now
Questions 43

A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.

Which AWS service or feature will meet these requirements MOST cost-effectively?

Options:

A.

AWS Step Functions

B.

AWS Glue workflows

C.

AWS Glue Studio

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

Buy Now
Questions 44

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Buy Now
Questions 45

A company stores customer records in Amazon S3. The company must not delete or modify the customer record data for 7 years after each record is created. The root user also must not have the ability to delete or modify the data.

A data engineer wants to use S3 Object Lock to secure the data.

Which solution will meet these requirements?

Options:

A.

Enable governance mode on the S3 bucket. Use a default retention period of 7 years.

B.

Enable compliance mode on the S3 bucket. Use a default retention period of 7 years.

C.

Place a legal hold on individual objects in the S3 bucket. Set the retention period to 7 years.

D.

Set the retention period for individual objects in the S3 bucket to 7 years.

Buy Now
Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
Last Update: Jan 30, 2025
Questions: 152
Data-Engineer-Associate pdf

Data-Engineer-Associate PDF

$25.5  $84.99
Data-Engineer-Associate Engine

Data-Engineer-Associate Testing Engine

$30  $99.99
Data-Engineer-Associate PDF + Engine

Data-Engineer-Associate PDF + Testing Engine

$40.5  $134.99